Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.321
Filtrar
1.
Antimicrob Resist Infect Control ; 13(1): 37, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600535

RESUMEN

INTRODUCTION: Antimicrobial resistance (AMR) is a pressing global health concern, particularly pronounced in low-resource settings. In Ethiopia, the escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) poses a substantial threat to public health. METHODS: A comprehensive search of databases, including PubMed, Scopus, Embase, Hinari, and Google Scholar, identified relevant studies. Inclusion criteria encompassed observational studies reporting the prevalence of meropenem-resistant P. aeruginosa in Ethiopia. Quality assessment utilized JBI checklists. A random-effects meta-analysis pooled data on study characteristics and prevalence estimates, with subsequent subgroup and sensitivity analyses. Publication bias was assessed graphically and statistically. RESULTS: Out of 433 studies, nineteen, comprising a total sample of 11,131, met inclusion criteria. The pooled prevalence of meropenem-resistant P. aeruginosa was 15% (95% CI: 10-21%). Significant heterogeneity (I2 = 83.6%) was observed, with the number of P. aeruginosa isolates identified as the primary source of heterogeneity (p = 0.127). Subgroup analysis by infection source revealed a higher prevalence in hospital-acquired infections (28%, 95% CI: 10, 46) compared to community settings (6%, 95% CI: 2, 11). Geographic based subgroup analysis indicated the highest prevalence in the Amhara region (23%, 95% CI: 8, 38), followed by Addis Ababa (21%, 95% CI: 11, 32), and lower prevalence in the Oromia region (7%, 95% CI: 4, 19). Wound samples exhibited the highest resistance (25%, 95% CI: 25, 78), while sputum samples showed the lowest prevalence. Publication bias, identified through funnel plot examination and Egger's regression test (p < 0.001), execution of trim and fill analysis resulted in an adjusted pooled prevalence of (3.7%, 95% CI: 2.3, 9.6). CONCLUSION: The noteworthy prevalence of meropenem resistance among P. aeruginosa isolates in Ethiopia, particularly in healthcare settings, underscores the urgency of implementing strict infection control practices and antibiotic stewardship. Further research is imperative to address and mitigate the challenges posed by antimicrobial resistance in the country.


Asunto(s)
Antiinfecciosos , Infecciones por Pseudomonas , Humanos , Etiopía/epidemiología , Meropenem/farmacología , Prevalencia , Pseudomonas aeruginosa , Infecciones por Pseudomonas/epidemiología , Farmacorresistencia Bacteriana
2.
Ann Clin Microbiol Antimicrob ; 23(1): 32, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600542

RESUMEN

BACKGROUND: Elizabethkingia is emerging as an opportunistic pathogen in humans. The aim of this study was to investigate the clinical epidemiology, antimicrobial susceptibility, virulence factors, and genome features of Elizabethkingia spp. METHODS: Clinical data from 71 patients who were diagnosed with Elizabethkingia-induced pneumonia and bacteremia between August 2019 and September 2021 were analyzed. Whole-genome sequencing was performed on seven isolates, and the results were compared with a dataset of 83 available Elizabethkingia genomes. Genomic features, Kyoto Encyclopedia of Genes and Genomes (KEGG) results and clusters of orthologous groups (COGs) were analyzed. RESULTS: The mean age of the patients was 56.9 ± 20.7 years, and the in-hospital mortality rate was 29.6% (21/71). Elizabethkingia strains were obtained mainly from intensive care units (36.6%, 26/71) and emergency departments (32.4%, 23/71). The majority of the strains were isolated from respiratory tract specimens (85.9%, 61/71). All patients had a history of broad-spectrum antimicrobial exposure. Hospitalization for invasive mechanical ventilation or catheter insertion was found to be a risk factor for infection. The isolates displayed a high rate of resistance to cephalosporins and carbapenems, but all were susceptible to minocycline and colistin. Genomic analysis identified five ß-lactamase genes (blaGOB, blaBlaB, blaCME, blaOXA, and blaTEM) responsible for ß-lactam resistance and virulence genes involved in stress adaptation (ureB/G, katA/B, and clpP), adherence (groEL, tufA, and htpB) and immune modulation (gmd, tviB, cps4J, wbtIL, cap8E/D/G, and rfbC). Functional analysis of the COGs revealed that "metabolism" constituted the largest category within the core genome, while "information storage and processing" was predominant in both the accessory and unique genomes. The unique genes in our 7 strains were mostly enriched in KEGG pathways related to microRNAs in cancer, drug resistance (ß-lactam and vancomycin), ABC transporters, biological metabolism and biosynthesis, and nucleotide excision repair mechanisms. CONCLUSION: The Elizabethkingia genus exhibits multidrug resistance and carries carbapenemase genes. This study presents a comparative genomic analysis of Elizabethkingia, providing knowledge that facilitates a better understanding of this microorganism.


Asunto(s)
Antibacterianos , Infecciones por Flavobacteriaceae , Humanos , Adulto , Persona de Mediana Edad , Anciano , Antibacterianos/farmacología , Genoma Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Infecciones por Flavobacteriaceae/epidemiología , Infecciones por Flavobacteriaceae/genética , Genómica , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana
3.
Mol Biol Rep ; 51(1): 566, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656625

RESUMEN

BACKGROUND: Escherichia coli is the most common etiological agent of urinary tract infections (UTIs). Meanwhile, plasmid-mediated quinolone resistance (PMQR) is reported in E. coli isolates producing extended-spectrum ß-lactamases (ESBLs). Furthermore, the reservoirs and mechanisms of acquisition of uropathogenic Escherichia coli (UPEC) strains are poorly understood. On the other hand, UTIs are common in pregnant women and the treatment challenge is alarming. METHODS AND RESULTS: In the present study, 54 pregnant women with acute cystitis were included. A total of 108 E. coli isolates, 54 isolates from UTI and 54 isolates from faeces of pregnant women (same host) were collected. In the antimicrobial susceptibility test, the highest rate of antibiotic resistance was to nalidixic acid (77%, 83/108) and the lowest rate was to imipenem (9%, 10/108). Among the isolates, 44% (48/108) were ESBLs producers. A high frequency of PMQR genes was observed in the isolates. The frequency of PMQR genes qnrS, qnrB, aac(6')-Ib-cr, and qnrA was 58% (63/108), 21% (23/108), 9% (10/108), and 4% (4/108), respectively. Meanwhile, PMQR genes were not detected in 24% (20/85) of isolates resistant to nalidixic acid and/or fluoroquinolone, indicating that other mechanisms, i.e. chromosomal mutations, are involved in resistance to quinolones, which were not detected in the present study. In ESBL-producing isolates, the frequency of PMQR genes was higher than that of non-ESBL-producing isolates (81% vs. 53%). Meanwhile, UTI and faeces isolates mainly belonged to phylogenetic group B2 (36/54, 67% and 25/54, 46%, respectively) compared to other phylogenetic groups. In addition, virulence factors and multidrug-resistant (MDR) were mainly associated with phylogenetic group B2. However, predominant clones in faeces were not found in UTIs. Rep-PCR revealed the presence of 85 clones in patients. Among the clones, 40 clones were detected only in faeces (faeces-only), 35 clones only in UTI (UTI-only) and 10 clones in both faeces and UTI (faeces-UTI). We found that out of 10 faeces-UTI clones, 5 clones were present in the host's faeces flora. CONCLUSION: This study revealed a high rate of resistance to the quinolone nalidixic acid and a widespread distribution of PMQR genes in MDR E. coli strains producing ESBLs. The strains represented virulence factors and phylogenetic group B2 are closely associated with abundance in UTI and faeces. However, the predominant clones in faeces were not found in UTIs and it is possible that rep-PCR is not sufficiently discriminating clones.


Asunto(s)
Antibacterianos , Cistitis , Infecciones por Escherichia coli , Escherichia coli , Heces , Pruebas de Sensibilidad Microbiana , Plásmidos , Quinolonas , beta-Lactamasas , Humanos , Femenino , beta-Lactamasas/genética , Plásmidos/genética , Heces/microbiología , Quinolonas/farmacología , Embarazo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Adulto , Antibacterianos/farmacología , Cistitis/microbiología , Farmacorresistencia Bacteriana/genética , Prevalencia , Infecciones Urinarias/microbiología , Ácido Nalidíxico/farmacología
4.
Microbiology (Reading) ; 170(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661713

RESUMEN

Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50 % of the strains; bla TEM was the most prevalent BLEE gene (70 %), while the quinolone qnrB gene was observed in 60 % of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80 % of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.


Asunto(s)
Antibacterianos , Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos , Factores de Virulencia , Antibacterianos/farmacología , Plásmidos/genética , Virulencia/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/patogenicidad , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/clasificación , Factores de Virulencia/genética , Humanos , Infecciones por Enterobacteriaceae/microbiología , Fenotipo , Farmacorresistencia Bacteriana/genética , Quinolonas/farmacología , beta-Lactamas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Microbiología de Alimentos
5.
Discov Med ; 36(183): 853-864, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665033

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) are among the most common infections and can cause numerous complications of the renal system. This study aimed to assess the prevalence of uropathogens and their antibiotic susceptibility patterns in Al-Madinah Al-Munawarah, Saudi Arabia. METHODS: Data was collected from patients with UTIs presented at King Fahad General Hospital in Al-Madinah Al-Munawarah, Saudi Arabia. In this retrospective cross-sectional study, UTI microbial-causing agents and antimicrobial resistance profiles identified using automated systems, Phoenix and VITEK2, were collected between July 2022 and June 2023. In addition, minimal demographic data, including date of collection and sex and age of patients were collected and analyzed using Chi-square test. RESULTS: The study included 1394 patients positive for UTI, comprising 50.57% males and 49.43% females (chi-square goodness-of-fit, p > 0.999). Microbial identification and antimicrobial susceptibility tests were performed on UTI-positive cultures. Among UTIs, mono-infection, caused by a single pathogen, was the most prevalent, accounting for 88.16% of cases, whereas poly-infection (caused by multiple pathogens) presented at 11.9%. The most prevalent UTIs' pathogens were E. coli (30.59%), followed by Klebsiella pneumoniae (21.40%), Enterococcus faecalis (8.46%), Pseudomonas aeruginosa (7.81%), Streptococcus agalactiae (6.35%), Enterococcus faecium (3.01%), Proteus mirabilis (3.01%), Enterobacter cloacae (2.52%), Candida sp. (2.44%), Acinetobacter calcoaceticus-baumannii (1.95%), Staphylococcus aureus (1.79%), and Enterobacter aerogenes (1.30%). The most dominant pathogens that coexisted with other uropathogens to cause UTIs were K. pneumoniae and P. mirabilis (9.32%, chi-square 5.550, p = 0.018), K. pneumoniae and P. aeruginosa (8.07%, chi-square 6.285, p = 0.012), K. pneumoniae and E. faecalis (7.45%, chi-square 5.785, p = 0.016), Candida sp. and Enterococcus faecium (4.97%, chi-square 9.176, p = 0.002, and Candida sp. and Acinetobacter calcoaceticus-baumannii (3.11%, chi-square 4.312, p=0.038)). Among the uropathogens, gram-negative pathogens showed resistance to most of the tested antimicrobials (ampicillins, cephalosporins, fluoroquinolones, trimethoprim-sulfamethoxazole, aztreonam, and nitrofurantoin). High rates of resistance were identified to cephalosporins, amoxicillin-clavulanic acid, and trimethoprim-sulfamethoxazole. CONCLUSION: This study reported UT mono-infection and poly-infection in Al-Madinah Al-Munawarah, Saudi Arabia, with a predominant representation from gram-negative bacteria, Enterobacteriaceae. Most of the UT microbial strains showed a highly resistant profile.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias , Infecciones Urinarias/microbiología , Infecciones Urinarias/epidemiología , Infecciones Urinarias/tratamiento farmacológico , Humanos , Arabia Saudita/epidemiología , Estudios Retrospectivos , Masculino , Femenino , Prevalencia , Persona de Mediana Edad , Adulto , Estudios Transversales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Anciano , Adulto Joven , Adolescente , Farmacorresistencia Bacteriana , Niño , Preescolar
6.
Ann Clin Microbiol Antimicrob ; 23(1): 33, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622723

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is a major threat to children's health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. METHODS: We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS: mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. CONCLUSIONS: mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.


Asunto(s)
Antibacterianos , Neumonía , Humanos , Niño , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Farmacorresistencia Bacteriana/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Carbapenémicos , Sensibilidad y Especificidad , Líquido del Lavado Bronquioalveolar
7.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598339

RESUMEN

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Microbiología del Suelo
8.
Front Cell Infect Microbiol ; 14: 1289396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655285

RESUMEN

The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.


Asunto(s)
Antibacterianos , Enterobacteriaceae , Tigeciclina , Tigeciclina/farmacología , Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Humanos , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética , Minociclina/análogos & derivados , Minociclina/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/microbiología
9.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658529

RESUMEN

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Asunto(s)
Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas , Infecciones Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/aislamiento & purificación , Streptococcus pyogenes/clasificación , Infecciones Estreptocócicas/transmisión , Infecciones Estreptocócicas/microbiología , Humanos , Streptococcus/genética , Streptococcus/aislamiento & purificación , Secuencias Repetitivas Esparcidas/genética , Australia , Genoma Bacteriano/genética , Femenino , Masculino , Niño , Composición Familiar , Adulto , Preescolar , Adolescente , Estudios Longitudinales , Farmacorresistencia Bacteriana/genética , Adulto Joven
10.
Sci Rep ; 14(1): 9399, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658654

RESUMEN

Edwardsiella piscicida causes significant economic losses to the aquaculture industry worldwide. Phage-based biocontrol methods are experiencing a renaissance because of the spread of drug-resistant genes and bacteria resulting from the heavy use of antibiotics. Here, we showed that the novel Edwardsiella phage EPP-1 could achieve comparable efficacy to florfenicol using a zebrafish model of Edwardsiella piscicida infection and could reduce the content of the floR resistance gene in zebrafish excreta. Specifically, phage EPP-1 inhibited bacterial growth in vitro and significantly improved the zebrafish survival rate in vivo (P = 0.0035), achieving an efficacy comparable to that of florfenicol (P = 0.2304). Notably, integrating the results of 16S rRNA sequencing, metagenomic sequencing, and qPCR, although the effects of phage EPP-1 converged with those of florfenicol in terms of the community composition and potential function of the zebrafish gut microbiota, it reduced the floR gene content in zebrafish excreta and aquaculture water. Overall, our study highlights the feasibility and safety of phage therapy for edwardsiellosis control, which has profound implications for the development of antibiotic alternatives to address the antibiotic crisis.


Asunto(s)
Antibacterianos , Bacteriófagos , Edwardsiella , Infecciones por Enterobacteriaceae , Tianfenicol/análogos & derivados , Pez Cebra , Animales , Pez Cebra/microbiología , Edwardsiella/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/terapia , Bacteriófagos/genética , Bacteriófagos/fisiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Microbioma Gastrointestinal , Terapia de Fagos/métodos , ARN Ribosómico 16S/genética , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/terapia , Enfermedades de los Peces/prevención & control , Tianfenicol/farmacología , Acuicultura/métodos
11.
Sci Rep ; 14(1): 9054, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643223

RESUMEN

The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.


Asunto(s)
Antibacterianos , Escherichia coli , Animales , Tigeciclina/farmacología , Antibacterianos/farmacología , Klebsiella pneumoniae , Pakistán , Farmacorresistencia Bacteriana/genética , Aves/genética , Plásmidos/genética , Genómica , Pruebas de Sensibilidad Microbiana
12.
Pan Afr Med J ; 47: 56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646132

RESUMEN

Introduction: the laboratory diagnosis of meningococcal meningitis relies on conventional techniques. This study aims to evaluate the correlation between the reduced sensitivity to penicillin G of Neisseria meningitidis (N.m) strains and the expression of the altered PBP 2 gene. Methods: out of 190 strains of N.m isolated between 2010 and 2021 at the bacteriology laboratories of Ibn Rochd University Hospital Centre (IR-UHC) in Casablanca and the UHC Mohammed VI in Marrakech, 23 isolates were part of our study. We first determined their state of sensitivity to penicillin G by E-Test strips and searched for the expression of the penA gene by PCR followed by Sanger sequencing. Results: of all the confirmed cases of N.m, 93.15% (n=177) are of serogroup B, 75.2% (n = 143) are sensitive to penicillin G and 24.73% (n = 47) are of intermediate sensitivity. No resistance to penicillin G was observed. Reduced sensitivity to penicillin G in N.m is characterized by mutations namely F504 L, A510 V, I515 V, G541 N and I566 V located in the C-terminal region of the penA gene encoding the penicillin-binding protein 2 (PBP2) (mosaic gene). Conclusion: our study presents useful data for the phenotypic and genotypic monitoring of resistance to penicillin G in N.m and can contribute to the analysis of genetic exchanges between different Neisseria species.


Asunto(s)
Antibacterianos , Hospitales Universitarios , Meningitis Meningocócica , Pruebas de Sensibilidad Microbiana , Neisseria meningitidis , Penicilina G , Marruecos , Humanos , Antibacterianos/farmacología , Neisseria meningitidis/genética , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/aislamiento & purificación , Penicilina G/farmacología , Meningitis Meningocócica/microbiología , Meningitis Meningocócica/tratamiento farmacológico , Reacción en Cadena de la Polimerasa , Mutación , Proteínas de Unión a las Penicilinas/genética , Proteínas Bacterianas/genética , Resistencia a las Penicilinas/genética , Farmacorresistencia Bacteriana/genética , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Neisseria meningitidis Serogrupo B/efectos de los fármacos
14.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667187

RESUMEN

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Carbapenémicos , Endodesoxirribonucleasas , beta-Lactamasas , Carbapenémicos/farmacología , beta-Lactamasas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Técnicas Biosensibles , Farmacorresistencia Bacteriana/genética
15.
Curr Microbiol ; 81(6): 148, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642082

RESUMEN

The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. Heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Bacterias/genética
17.
Comp Immunol Microbiol Infect Dis ; 108: 102169, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579648

RESUMEN

The role of small animal veterinary hospitals in the onset and dissemination of antimicrobial-resistant organisms (AMROs) is still not clear, and the implementation of an internal surveillance systems is a cost-effective tool to better understand their impact. The aim of this study was to describe a pilot program of active surveillance in a Spanish Veterinary Teaching Hospital, developed to estimate the detection frequency of AMROs in the commensal flora of patients and in the environment. Surveillance was focused on Methicillin-resistant Staphylococci (MRS), third generation cephalosporins resistant gram-negative bacteria (3GCR-GNB), and carbapenems-resistant gram-negative bacteria (CR-GNB). Oral and perirectal swabs were collected in the same dogs and cats hospitalized > 48 h, at their admission and before their discharge. Out of 50 patients sampled, 24% (12/50) were carriers at admission of at least one of the three investigated AMROs. Twenty-eight percent of patients (14/50) acquired at least one AMRO during the hospital stay. MRS detection frequency at admission was 12% (6/50), while acquisition was 6% (3/50). 3GCR-GNB detection frequency was 14% at admission (7/50) and acquisition 22% (11/50), while CR-GNB detection frequency was 2% at admission (1/50) and acquisition 2% (1/50). Environmental surveillance (98 samples) showed a total detection frequency of 22.4% for MRS (22/98), 2% for 3GCR-GNB and CR-GNB (2/98). Clinical staff' shoe soles showed high detection frequency for MRS (50%). 3GCR Escherichia coli was the most isolated species in patients (n = 17). The results show how active surveillance can be used as a tool to assess the impact of AMROs in veterinary hospitals to subsequently build up tailored control plans based on specific issues.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Infecciones por Bacterias Gramnegativas , Humanos , Animales , Gatos , Perros , Antibacterianos/farmacología , Hospitales Veterinarios , Proyectos Piloto , Enfermedades de los Gatos/microbiología , Espera Vigilante , Farmacorresistencia Bacteriana , Hospitales de Enseñanza , Enfermedades de los Perros/microbiología , Carbapenémicos , Bacterias Gramnegativas , Staphylococcus , Escherichia coli , Infecciones por Bacterias Gramnegativas/veterinaria
18.
Sex Transm Infect ; 100(3): 173-180, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38575313

RESUMEN

OBJECTIVES: International travel combined with sex may contribute to dissemination of antimicrobial-resistant (AMR) Neisseria gonorrhoeae (Ng). To assess the role of travel in Ng strain susceptibility, we compared minimum inhibitory concentrations (MICs) for five antibiotics (ie, azithromycin, ceftriaxone, cefotaxime, cefixime and ciprofloxacin) in strains from clients with an exclusively Dutch sexual network and clients with an additional international sexual network. METHODS: From 2013 to 2019, we recorded recent residence of sexual partners of clients (and of their partners) with Ng at the Center for Sexual Health of Amsterdam. We categorised clients as having: (1) exclusively sexual partners residing in the Netherlands ('Dutch only') or (2) at least one partner residing outside the Netherlands. We categorised the country of residence of sexual partners by World Bank/EuroVoc regions. We analysed the difference of log-transformed MIC of Ng strains between categories using linear or hurdle regression for each antibiotic. RESULTS: We included 3367 gay and bisexual men who had sex with men (GBMSM), 516 women and 525 men who exclusively had sex with women (MSW) with Ng. Compared with GBMSM with a 'Dutch only' network, GBMSM with: (1) a Western European network had higher MICs for ceftriaxone (ß=0.19, 95% CI=0.08 to 0.29), cefotaxime (ß=0.19, 95% CI=0.08 to 0.31) and cefixime (ß=0.06, 95% CI=0.001 to 0.11); (2) a Southern European network had a higher MIC for cefixime (ß=0.10, 95% CI=0.02 to 0.17); and (3) a sub-Saharan African network had a lower MIC for ciprofloxacin (ß=-1.79, 95% CI=-2.84 to -0.74). In women and MSW, higher MICs were found for ceftriaxone in clients with a Latin American and Caribbean network (ß=0.26, 95% CI=0.02 to 0.51). CONCLUSIONS: For three cephalosporin antibiotics, we found Ng strains with slightly higher MICs in clients with partner(s) from Europe or Latin America and the Caribbean. International travel might contribute to the spread of Ng with lower susceptibility. More understanding of the emergence of AMR Ng is needed.


Asunto(s)
Antiinfecciosos , Gonorrea , Salud Sexual , Masculino , Femenino , Humanos , Neisseria gonorrhoeae , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Cefixima/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Azitromicina/farmacología , Cefotaxima/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana
19.
J Med Econ ; 27(1): 644-652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577742

RESUMEN

AIM: The US Food and Drug Administration approved the 20-valent pneumococcal conjugate vaccine (PCV20) to prevent pneumococcal disease. In the context of routine PCV20 vaccination, we evaluated the cost-effectiveness and public health and economic impact of a PCV20 catch-up program and estimated the number of antibiotic prescriptions and antibiotic-resistant infections averted. MATERIALS AND METHODS: A population-based, multi-cohort, decision-analytic Markov model was developed using parameters consistent with previous PCV20 cost-effectiveness analyses. In the intervention arm, children aged 14-59 months who previously completed PCV13 vaccination received a supplemental dose of PCV20. In the comparator arm, no catch-up PCV20 dose was given. The direct and indirect benefits of vaccination were captured over a 10-year time horizon. RESULTS: A PCV20 catch-up program would prevent 5,469 invasive pneumococcal disease cases, 50,286 hospitalized pneumonia cases, 218,240 outpatient pneumonia cases, 582,302 otitis media cases, and 1,800 deaths, representing a net gain of 30,014 life years and 55,583 quality-adjusted life years. Furthermore, 720,938 antibiotic prescriptions and 256,889 antibiotic-resistant infections would be averted. A catch-up program would result in cost savings of $800 million. These results were robust to sensitivity and scenario analyses. CONCLUSIONS: A PCV20 catch-up program could prevent pneumococcal infections, antibiotic prescriptions, and antimicrobial-resistant infections and would be cost-saving in the US.


Asunto(s)
Infecciones Neumocócicas , Neumonía , Niño , Humanos , Vacunas Conjugadas/uso terapéutico , Antibacterianos/uso terapéutico , Análisis Costo-Beneficio , Farmacorresistencia Bacteriana , Infecciones Neumocócicas/prevención & control
20.
Helicobacter ; 29(2): e13075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38627919

RESUMEN

BACKGROUND: The current standard treatment for Helicobacter pylori infection, which involves a combination of two broad-spectrum antibiotics, faces significant challenges due to its detrimental impact on the gut microbiota and the emergence of drug-resistant strains. This underscores the urgent requirement for the development of novel anti-H. pylori drugs. Zoliflodacin, a novel bacterial gyrase inhibitor, is currently undergoing global phase III clinical trials for treating uncomplicated Neisseria gonorrhoeae. However, there is no available data regarding its activity against H. pylori. MATERIALS AND METHODS: We evaluated the in vitro activity of zoliflodacin against H. pylori clinical isolates (n = 123) with diverse multidrug resistance. We performed DNA gyrase supercoiling and microscale thermophoresis assays to identify the target of zoliflodacin in H. pylori. We analyzed 2262 H. pylori whole genome sequences to identify Asp424Asn and Lys445Asn mutations in DNA gyrase subunit B (GyrB) that are associated with zoliflodacin resistance. RESULTS: Zoliflodacin exhibits potent activity against all tested isolates, with minimal inhibitory concentration (MIC) values ranging from 0.008 to 1 µg/mL (MIC50: 0.125 µg/mL; MIC90: 0.25 µg/mL). Importantly, there was no evidence of cross-resistance to any of the four first-line antibiotics commonly used against H. pylori. We identified GyrB as the primary target of zoliflodacin, with Asp424Asn or Lys445Asn substitutions conferring resistance. Screening of 2262 available H. pylori genomes for the two mutations revealed only one clinical isolate carrying Asp424Asn substitution. CONCLUSION: These findings support the potential of zoliflodacin as a promising candidate for H. pylori treatment, warranting further development and evaluation.


Asunto(s)
Barbitúricos , Infecciones por Helicobacter , Helicobacter pylori , Isoxazoles , Morfolinas , Oxazolidinonas , Compuestos de Espiro , Humanos , Antibacterianos/farmacología , Girasa de ADN/genética , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Pruebas de Sensibilidad Microbiana , Ensayos Clínicos Fase III como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA